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The basic idea of all four papers is to look at non-Einsteinian Rela-

tivity Pinciples from an, albeit anachronistic, Spacetime view point

In our context a Principle of Relativity involves a notion of the in-

variance of physical laws under passing to a moving frame which we

interpret as a symmetry of some sort of spacetime structure.



In effect we follow the path pioneered by Bacry and Levy-Leblond
∗ who found all algebras containing rotations, spatial and temporal

translations and boosts. All may be regarded as Wigner-Inönü con-

tractions † of the two De-Sitter groups.

Note that without boosts we would simply be classifying Aristotelian

spacetimes which leads to Helmholtz’s classification of congruence

geometries ‡ .

∗H. Bacry and J. Levy-Leblond, Possible kinematics J. Math. Phys. 9 (1968) 1605.
†E. Inn, E.P. Wigner (1953). ”On the Contraction of Groups and Their Represen-
tations”. Proc. Nat. Acad. Sci. 39 (6): 51024.

‡Über die Thatsachen, welche der Geometrie zu Grunde liegen, in Wissenschaftliche
Abhandlungen, Volume II, Leipzig: Johann Ambrosius Barth, 618639. Originally
published in the Nachrichten von der Knigl. Gesellschaft der Wissenschaften zu
Gttingen, No. 9 (3 June 1868).



The contractions are:

• Newton-Hooke Λ → O , c → ∞ , c2Λ3 finite

• Poincaré Λ → O , c finite.

• Galilei Λ → O , c → ∞.

• Carroll Λ → O , c → 0

There is a certain duality between the Galilei and Carroll groups. In

one the future light cone t > 1
c |x| expands to become a future half

space t > 0. In the other it contracts to become a future half line

t > 0 ,x = 0. One allows instantaneous propagation, the other is

ultra-local and forbids any propagation.



All kinematic groups have flat invariant model space time which allows

a curved generalisation.

For Galilei this is Newton-Cartan spacetime with its degenerate co-

metric gij whose kernel are co-normals of the absolute time slices

Carrollian spacetime. has a degenerate metric gij whose kernel is

tangent to the absolute future ∗.

∗To quote Mrs Thatcher: TINA, i.e. There is no alternative



Well, in our country,” said Alice, still panting a little, ”you’d

generally get to somewhere else if you run very fast for a long

time, as we’ve been doing.”

A slow sort of country!” said the Queen. ”Now, here, you

see, it takes all the running you can do, to keep in the same

place. If you want to get somewhere else, you must run at

least twice as fast as that!”



For Galilei, boosts act as

(t,x) → (t,x− vt)

For Carroll, boosts act as

(s,x) → (s− b · x,x)

where t is Galilean time and s is Carrollian time.



In 1+1 spacetime dimensions, Galileo and Carroll coincide as groups

. since we may interchange Galilean space and with Carrolian time and

vice versa



Taking the limit c ↑ ∞ in the contra-variant Minkowski co- metric
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motivates the definition of a Newton-Cartan Spacetime as a quadrupole

{N, γ, θ,∇} where N is a smooth d+1 manifold , γ a symmetric semi-

positive definite contravariant 2-tensor of rank d with kernel the one-

form θ and ∇ a symmetric affine connection w.r.t. which γ and θ are

parallel.



Taking the limit c ↑ ∞ in the co-variant Minkowski metric

−c2dt2 + δijdx
idxj

motivates the definition of a Carrollian Spacetime as a quadrupole

{C, g, ξ,∇} where N is a smooth d+1 manifold , g a symmetric semi-

positive definite co-variant 2-tensor of rank d with kernel the vector

field ξ and ∇ a symmetric affine connection w.r.t. which ξ and ∇ are

parallel.



The standard flat case is C = R × Rd, gij = δij, ξ = ∂
∂s, Γµ

ν
λ = 0

where s is Carrollian time. The isometry group of the Carrollian metric

contains

xi → xi , s → s+ f(xi)

and so is infinite dimensional but if we require that the Carrolian

automorphisms preserve the connection ∇ we obtain the standard

finite dimensional Carroll group.



All the kinematic groups have a description in terms of Lorentzian

geometry in 4+1 spacetime dimensions.

• Minkowski spacetime arises from a Kaluza-Klein reduction on a

spacelike translation as shown by Kaluza and Klein.

• Newton-Cartan spacetime from a reduction on a null translation as

shown by Duval and Kunzle.

• Carrollian spacetime arises as the pull-back to a null hyperplane.

Indeed given any null surface (like future null infinity) I+ Carrollian

structures come into play.



We dfine a Bargmann Manifold as a triple {B,G, ξ} where B is a (d+2)

manifold, G a Lorentzian metric (i.e non-degenerate and signature

(d + 1,1) and a null vector field ξ which is parallel w.r.t. the Levi-

Civita connection of G. The standard flat Bargmann structure is

given by B = , ξ = ∂
∂s with

G = δijdx
idxj + dt⊗ ds+ ds⊗ dt

Not that both s and t are null coordinates.



The standard flat Newton-Cartan structure is obtained by pushing for-

ward the flat Bargmann structure to the quotient or lightlike shadow

or null reduction N = B/(Rξ) The Bargmann group consists of those

isometries of B which preserve ξ. This is a central extension of the

Galilei group, the centre being generated by ξ.

One may also obtain the central extension of the conformal Schroedinger

group, the symmetry of the free Schroedinger equation as the those

conformal transformations of d+2-dimensional Minkowski spacetime

which commute with the action of Rξ.



Massles scalar field in Ed+1,1 is invariant under conformal transforma-

tions

2
∂2φ

∂t∂s
φ(s, t, xi) +∇2φ = 0 .

set

ξφ = −imφ , φ = e−imsΨ(t, xi)

then

i
∂Ψ

∂t
= −

1

2m
∇2Ψ .



The standard flat Carroll structure is obtained by pulling back the flat

Bargmann structure to a null hypersurface t = constant. The Carroll

group consists of this isometries of B which commute with the pull

back.

Note, by a Lie-algebra co-homology argument it has been shown that

that the Carroll group admits no central extension.



A non-standard Carroll structure may be obtained by taking the prod-

uct C = R×Σd where Σd with Riemmann metric ĝ and g = ĝ⊕0×du2

and ξ = ∂
∂u, where u is a coordinate on R. For ∇ we could take the

Levi-civita connection of {Σ, ĝ}.



For a general Carroll structure {C, g, ξ∇} we define the Conformal

Carroll group of level N as consisting of diffomeorphisms a such that

a⋆ĝ = Ω2ĝ , a⋆ = Ω− 2
N ξ

For the flat Carroll structure this has Killing vactor fields

X = (ωijxj + γi(χ− 2κixi)+ κixjxj)
∂

∂xi
+

(

2

N
(χ− 2κjxj)u+ T(xk)

)

∂

∂u

This is infinite dimensional because of the super-translations T(xi)

which have conformal weight = − 2
N , i.e. are densities of weight

ν = − 2
Nd. The quantity z = 2

N is known as a dynamical exponent.



If N = 2 , z = 1 and we have symmetry between the scaling of space

and time.

If d = 1, using the isomorphism between the Carroll and Galilei alge-

bras described above we obtain the Conformal Galilei algebra. CGA

introduced by many people in a variety of contexts.

The isometry group of the flat Carroll structure is obtained by setting

Ω = 1. Its Lie algebra is also infinite dimensional, because of the

supertanslations. Requiring that the connection is preserved reduces

the Carroll Lie algebra to the standard finite dimensonal case obtained

by Levy-Lebond and Bacry.



For a general Carollian structure , the Conformal Carroll group is

generated by

X = Y +
( λ

N
+ T(x)

) ∂

∂u

where Y is a confomal vector field of {Σ, ĝ}

LY g = λg

generating

x → φ(x) , u → Ω
2
N (u+ α(x))



Example

If {Σd, ĝ} = {S1, dθ2} we get Diff(S1) semi-direct product super trans-

lations of weight ν = − 2
N generated by the vector field

X = Y (θ)
∂

∂θ
+

( 2

N
Y ′(θ) + T(θ)

) ∂

∂u
.

whose algebra is an extension of the Witt or Virasoro algebra.

Example

If {Σd, g} = {S2, dθ2 + sin2 θdφ2} and N = 2 we get

PSL(2,C) ⋉ T



where T are half densities on S2 which is the Bondi-Metzner-Sachs

Group

Which was originally discovered as the asymptotic symmetry group

of an asymptotically flat four-dimensional spactime. The BMS Group

has an obvious generalisation to Sd for all d > 2. However this gen-

eralistion does not appear to coincide with the asymptotic symmetry

group of an asymptotically flat spactime of dimension greater than

four.



We may weaken our requirement on the conformal Carroll group so

that α(x) only preserves the conformal class of the Carroll metric g.

Since the vector field ξ spans the kenel of g, α is only requred to

preserve the direction of ξ. Thus its generating vector field X need

only satisfy

LXξ = µ(x, u)ξ , ⇒ X = Y + F(u, x)
∂

∂u
(1)

where F(u, x) is an arbitrary function of both x and x, and Y is a

conformal Killing field of the Riemannian manifold {Σd, ĝ}

Example

If {Σd, ĝ} = {Σd, g} = {S2, dθ2 + sin2 θdφ2} we obtain the Newman-

Unti Group which was introduced by these authors in the study of

asymptotically flat four-dimensional spactimes.



• Carrollian and BMS symmetries have a number of applications to
various topics of current interest to string theorists and holography
which was the original motivation for the work reported in this lecture.

• Using our enhanced understanding of the Carroll group We were
able construct Carrollian-invariant theories of electromagnetism.

• Using a method of Souriau we constructed theories of Carrollian
massive and massless particles. One finds the former do not move,
consitent with other view points.

• Perhaps the most intriguing is to Schild or Null Strings, that is
strings whose two-dimensional world sheet carries a Carrollian met-
ric, i.e is a two-dimensional null surface. It turns out that Souriau’s
procedure for obtaining dynamical systems invariant under a group G
applied to massless “particles “ leads to Schild Strings.



Souriau’s procedure starts with an Evolution space {V, σ} where σ is a

closed 2-form, dσ = 0. By virtue of the closure of σ ist kernel ker(σ)

defines a (i.e continuous asigment of a vector sub-space ker(σ) ⊂ TM

) which is integrable, i.e for which A,B ∈ ker(σ) → [A,B] ∈ ker(σ).

The space of leaves {U, σ} is thus a sympletic manifold called the

Space of Motions, i.e the space of histories of the system defined by

{V, σ} .

For a Lie group G one may choose for V = G/H a co-adjoint orbit of

G in g equipped with the so-called its Kostant-Kirilov-Souriau 2-form.

For a spacetime group, such as the Carroll group we may also project

the leaves defined by ker(Kostant−Kirilov − Souriau2− form) in the

spacetime,( another coset).



If the projected orbits have dimension p+1 we have a p-brane. The

case p = 0 is a particle and if p = 1 we have a string.

Cranking through this machinery we found that if G = Carroll we

obtain a Schild String.


