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Abstract

Based on arXiv:1309.7248, ‘The equations of CCC’, and
unpublished work with Laszlo Szabados.

I suggest a slight modification to Penrose’s prescription for CCC
and show how this works out for FRW cosmologies, and I consider
the problem of defining mass at a space-like I+.



The basic picture

Motivating CCC:

• as a singularity of a Lorentz manifold. the Big Bang B was
very special;

• the specialness was something like finite or zero Weyl tensor
at B;

• with a positive Λ there will automatically be a space-like future
boundary I at which the Weyl tensor automatically vanishes.

Whence the outrageous suggestion (RP 2005):

Identify I of one aeon with B of a following one: the conformal
metric is cyclic.



The basic picture continued

Concentrate on two particular aeons, so that’s three
manifolds-with-metric:

• the previous aeon (M̂, ĝ);

• the present aeon (M̌, ǧ);

• the conformal extension (M, g) of both, so that

ĝ = Ω̂2g , ǧ = Ω̌2g ;

and then M = M̂ ∪ M̌ ∪ Σ where Σ is the common boundary:

Σ = {Ω̂−1 = 0} = {Ω̌ = 0}.



The basic picture continued

Then following Penrose, the assumptions of CCC entail:

• Σ is I+ for M̂ and the big bang for M̌;

• RP’s reciprocal hypothesis: Ω̌Ω̂ = −1, which is essentially a
gauge condition, and now ǧ = Ω̂−4ĝ ;

• the matter content in M̂ near Σ is radiation fluid plus positive
cosmological constant Λ̂ (possibly plus dynamically
unimportant Maxwell fields which nevertheless go right
through I+).



The basic picture continued

Then necessarily

• since ǧ = Ω̂−4ĝ , the matter content in M̌ near Σ will be
determined from the previous aeon by ĝ and Ω̂; it should be
roughly the same as in M̂ but with an extra field to represent
dark matter;

• the Weyl tensors satisfy

Ĉ d
abc = Č d

abc = C d
abc and vanish at Σ.

Now the key question is:

• How does one specify a unique Ω̂ given ĝ?

as without a prescription for a unique Ω̂ one cannot get M̌ from M̂.



The strategy for making CCC models

• Choose the matter model you want in M̂;

• seek a unique prescription for Ω̂;

• use the conformal rescaling to define the Einstein tensor Ǧab

in M̌;

• and seek to interpret it.



The Starobinsky expansion

Starobinsky (1983) considered metrics:

g = dt2 − hij(t, x
i )dx idx j

= dt2 − e2Ht(aij + e−2Htbij + e−3Htcij + . . .)dx idx j ,

where Λ = 3H2.

• these have ‘full asymptotics’ (Rendall 2003);

• (aij , cij) are free data (there may be more);

• Friedrich’s solutions (with data at I+, 1986, 1991) have this
expansion.

Ask: what is the gauge freedom in the Starobinsky expansion?



The Starobinsky expansion continued

Gauge freedom: shift t → t̃ = t − φ(x i ) together with a
redefinition of the comoving space coordinates; this gives

aij → ãij = e2Hφaij , cij → c̃ij = e−Hφcij .

Our strategy will be to take ĝab in the Starobinski form and seek a
unique prescription for Ω̂ by constraining aij .



The example of FRW

• the metric is g = dt2 − R(t)2dσ2
k ;

• with a radiation fluid source we have ρR4 = m, a constant;

• the Friedmann equation is(
dR

dτ

)2

=
m

3
− kR2 +

Λ

3
R4,

where dτ = dt/R (defining conformal time).

Take this for ĝ and put hats on everything: R̂, t̂, ρ̂, Λ̂, ...

Now try the obvious: Ω̂ = c1R̂ for some constant c1 to be fixed.



The example of FRW continued

Then
ǧ = Ω̂−4ĝ = dť2 − Ř(ť)2dσ2

k ,

with
Ř = c21 R̂

−1, dτ = dt̂/R̂ = dť/Ř.

So

• ǧ is again in the FRW form;

• with the choice c1 = (Λ̂/m̂)1/4 the Friedmann equation
transforms from a hatted to a checked version with

m̌ = m̂, Λ̌ = Λ̂;

• and the two aeons are diffeomorphic i.e the same solutions of
the EFEs.

How close can we stay to this case when there is some Weyl
curvature?



Finding a unique Ω̂

With ĝ in Starobinski form, expand Ω̂−1 as

φ := Ω̂−1 = e−Ht̂φ1 + e−2Ht̂φ2 + e−3Ht̂φ3 + . . . .

The scalar curvature s of the intermediate metric g satisfies the
equation

�̂φ+ 2H2φ =
1

6
sφ3.

If s = 12H2 this is Penrose’s phantom field equation, but we can
leave s as a constant to be chosen later and solve this equation
term by term.



Finding a unique Ω̂ continued

With

φ := Ω̂−1 = e−Ht̂φ1 + e−2Ht̂φ2 + e−3Ht̂φ3 + . . .

claim

• φ1 and φ2 are freely specifiable;

• subsequent φn are determined;

while the example of FRW suggests

• choose φ2 = 0 (which is Penrose’s Delayed Rest Mass
Hypothesis) and choose φ1 to make the metric of I+ (which
is φ2

1aij) have constant scalar curvature;

• set s = sI
+
with sI

+
the scalar curvature of the metric of I+

(rather than s = 12H2).

These choices fix Ω̂ or φ up to a single constant which we may
hope to fix by demanding Λ̌ = Λ̂.



The matter content after the bang

The rescaling formula for the Ricci tensor with ǧ = Ω̂−4ĝ is

R̂ab = Řab + 2∇̌aΥb − 2ΥaΥb + ǧabǧ
ef (∇̌eΥf + 2ΥeΥf )

with Υa = 2∂a log Ω̂. The Einstein equations in M̂ are

R̂ab = −κT̂ab + Λ̂ĝab,

where

T̂ab =
1

3
ρ̂(4ûaûb − ĝab).

Now solve for Ǧab!



The matter content after the bang continued

To preserve the conservation equation we define

Ťab = Ω̂4T̂ab = φ−4T̂ab

and then

Ǧab = −κφ4Ťab+
4

φ
∇̌a∇̌bφ+

4

φ2
φaφb+

(
8
|∇̌φ|2

φ2
− 4

�̌φ

φ
− Λ̂

φ4

)
ǧab.

Does this give sensible answers? Examples (expanding ǧ as a
power series) indicate that it does.



What is the physical content of CCC?

In the sense of observable consequences:

• Circles in the CMB (P&G, MNR, AMN, width?);

• BICEP2 and magnetic fields (which go through I+);

• inflation happening before the Bang?

These motivate the question of how to think about energy coming
through the Bang, and therefore how to think about mass at I+...



Mass at I+ with Λ > 0

Can this be defined, by analogy with other asymptotic measures of
mass, energy, momentum, ...?

Think about linear theory in de Sitter space, then:

• there are plenty of Killing vectors in de Sitter, giving rise to
conserved quantities, but

• there are no Killing vectors in de Sitter which are time-like
across a complete space-like hypersurface;

• in fact all Killing vectors are tangent to I+;

• but there are time-like conformal Killing vectors, which
produce conserved currents from trace-free Tab.

And this continues to hold in FRW with Λ > 0....



Mass at I+ continued

In FRW with Λ > 0:

• with g = dt2 − R(t)2dσ2
k , claim K a = Rua is a CKV;

• corresponding current is Ja := TabK
b = ρRua and is

conserved for radiation equation of state,

• when also ρ0 := ρR4 = const. so that

•
M(V) :=

∫
Σ
J = ρ0Vσ(V)

where Σ is a space-like surface spanning a volume V on I+

and Vσ is volume measured by dσ2
k , the metric of I+.

which in turn continues to work with the Starobinski metric:



Mass at I+ continued

With the Starobinski metric

• set Ja := ρRua with the modified definition
R ∼ (dethij/detaij)

1/6;

• then this is conserved for radiation e.o.s. and again
ρ0 := ρR4 = const., so that

• M(V) :=
∫
Σ J = ρ0Va(V), when Va is volume measured by

aij , the metric of I+.

This definition evidently omits contributions from gravitational
radiation to total energy. For that, try something else:



Mass at I+ continued: Penrose’s quasi-local quantities

Recall this construction:

• given a space-like, topologically-spherical two surface S find
the two-surface twistors of S – these are a C4 of special spinor
fields ωA

i (x) ∼ Zα
i ∈ T(S) determined on S by the first and

second fundamental forms of S ;

• construct the bilinear AαβZ
α
1 Z

β
2 :=

∫
S RabCDω

C
1 ω

D
2 dS

ab from
the Riemann tensor at S ;

• then Aαβ defines the quasi-local kinematic quantities at S .

This construction reproduces the standard definitions of
asymptotic momenta in asymptotically-flat and asymptotically-anti
de Sitter space-times, and links up with the Witten argument to
prove positivity.

Work in progress...



Nothing new...

“And I saw a new heaven and a new earth: for the first heaven and
the first earth were passed away; and there was no more sea.”

The Revelation of St. John the Divine; Chapter 21, Verse 1.


