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Abstract

Based on arXiv:1309.7248, ‘'The equations of CCC’, and
unpublished work with Laszlo Szabados.

| suggest a slight modification to Penrose’s prescription for CCC
and show how this works out for FRW cosmologies, and | consider
the problem of defining mass at a space-like .



The basic picture

Motivating CCC:
as a singularity of a Lorentz manifold. the Big Bang B was
very special,

the specialness was something like finite or zero Weyl tensor
at B;

with a positive A there will automatically be a space-like future
boundary Z at which the Weyl tensor automatically vanishes.

Whence the outrageous suggestion (RP 2005):

Identify Z of one aeon with B of a following one: the conformal
metric is cyclic.



The basic picture continued

Concentrate on two particular aeons, so that's three
manifolds-with-metric:

the previous aeon (M,g);
the present aeon (I\V/I,é);
the conformal extension (M, g) of both, so that

g=0g, =0
and then M = M U M U X where ¥ is the common boundary:

y={Ql=0={Q=0}



The basic picture continued

Then following Penrose, the assumptions of CCC entail:
Y is Z+ for M and the big bang for M;

RP’s reciprocal hypothesis: Q0 = —1, which is essentially a
gauge condition, and now g = Q4

the matter content in M near ¥ is radiation fluid plus positive
cosmological constant A (possibly plus dynamically
unimportant Maxwell fields which nevertheless go right
through Z7).



The basic picture continued

Then necessarily

since § = Q7*2, the matter content in M near ¥ will be
determined from the previous aeon by g and €Q; it should be
roughly the same as in M but with an extra field to represent
dark matter;

the Weyl tensors satisfy

= (8 = C,pc? and vanish at T

Now the key question is:

How does one specify a unique  given g7

as without a prescription for a unique Q) one cannot get M from M.



The strategy for making CCC models

A~

Choose the matter model you want in M;
seek a unique prescription for Q;

use the conformal rescaling to define the Einstein tensor G,p
in /\v/l;

and seek to interpret it.



The Starobinsky expansion

Starobinsky (1983) considered metrics:
g = dt® — hj(t,x")dx'dx/
= dt® — M (a; + e b+ e 3t . )dxdx,
where A = 3H2.
these have ‘full asymptotics’ (Rendall 2003);

(ajj, cjj) are free data (there may be more);

Friedrich’s solutions (with data at Z*, 1986, 1991) have this
expansion.

Ask: what is the gauge freedom in the Starobinsky expansion?



The Starobinsky expansion continued

Gauge freedom: shift t — ¥ =t — ¢(x') together with a
redefinition of the comoving space coordinates; this gives

~ 2H ~ —H
aj — aj = ¢€ ¢a,-j, Cj— Cj=e¢e ¢C,'J'.

Our strategy will be to take g, in the Starobinski form and seek a
unique prescription for € by constraining aj;.



The example of FRW

o 2 2.
the metric is g = dt?> — R(t)?do?;
with a radiation fluid source we have pR* = m, a constant;

the Friedmann equation is

dR\? m A
— ) == —kR?+=R*
(d7> 3 T3

where d7 = dt/R (defining conformal time).

Take this for g and put hats on everything: R, %, D, A, ...

Now try the obvious: Q= clfA? for some constant c¢; to be fixed.



The example of FRW continued

Then
g =01 = di* — R(Y)%do?,
with
R=c?R™, dr=dt/R=di/R
So

g is again in the FRW form;

with the choice ¢; = (A/M)Y/* the Friedmann equation
transforms from a hatted to a checked version with

v

m=r, A=A

and the two aeons are diffeomorphic i.e the same solutions of
the EFEs.

How close can we stay to this case when there is some Weyl
curvature?



Finding a unique Q

With g in Starobinski form, expand Q-1 as
¢ = O efH%(m + ef2H%¢>2 + ef3H%q53 + ...,

The scalar curvature s of the intermediate metric g satisfies the
equation

A 1
O¢ + 2H?*¢ = 6s¢3.
If s = 12H? this is Penrose's phantom field equation, but we can

leave s as a constant to be chosen later and solve this equation
term by term.



Finding a unique Q) continued

With
¢ = Q1= efH%¢1 + 672H%¢)2 + ef3H%¢3 +...

claim
¢1 and ¢, are freely specifiable;
subsequent ¢, are determined;
while the example of FRW suggests

choose ¢ = 0 (which is Penrose's Delayed Rest Mass
Hypothesis) and choose ¢1 to make the metric of Zt (which
is ¢2a;;) have constant scalar curvature;

set s = sZ with sZ' the scalar curvature of the metric of Z

(rather than s = 12H?2).

These choices fix { or ¢ up to a single constant which we may
hope to fix by demanding A = A.



The matter content after the bang

The rescaling formula for the Ricci tensor with g = ﬁ“‘@ is
Rab = Rap + 2V5Th — 2T + Zapg® (Ve Tr + 2T Tr)
with T, = 20, log . The Einstein equations in M are
Rip = —kTab + Agab,

where
1

Top = 5;3(4030,, — &ab).

Now solve for G,p!



The matter content after the bang continued

To preserve the conservation equation we define
N Aga 45
Tab =0 Tab = ¢ Tab

and then

éab = _H¢4 7_ab‘+' —4— — —

¢? ¢ ¢

RS

. Vo2 [ A
A ¢2¢a¢>b+<' o _,02 )grab.

Does this give sensible answers? Examples (expanding & as a
power series) indicate that it does.



What is the physical content of CCC?

In the sense of observable consequences:
Circles in the CMB (P&G, MNR, AMN, width?);
BICEP2 and magpnetic fields (which go through ZT);
inflation happening before the Bang?

These motivate the question of how to think about energy coming
through the Bang, and therefore how to think about mass at Z7 ...



Mass at ZT with A > 0

Can this be defined, by analogy with other asymptotic measures of
mass, energy, momentum, ...7
Think about linear theory in de Sitter space, then:

there are plenty of Killing vectors in de Sitter, giving rise to
conserved quantities, but

there are no Killing vectors in de Sitter which are time-like
across a complete space-like hypersurface;

in fact all Killing vectors are tangent to Z;

but there are time-like conformal Killing vectors, which
produce conserved currents from trace-free T,p.

And this continues to hold in FRW with A > 0....



Mass at Z™ continued

In FRW with A > 0:
with g = dt? — R(t)?do?, claim K? = Ru? is a CKV;
corresponding current is J, := Kb = pRu; and is
conserved for radiation equation of state,

when also pg := pR* = const. so that

M) = [ 1= mVo(v)

where ¥ is a space-like surface spanning a volume V on Z*
and V, is volume measured by da,%, the metric of Z7.

which in turn continues to work with the Starobinski metric:



Mass at Z™ continued

With the Starobinski metric
set J, := pRu, with the modified definition
R ~ (deth;;/deta;)'/®;
then this is conserved for radiation e.o.s. and again
po = pR* = const., so that
M(V) = [ J = poVa(V), when V; is volume measured by
ajj, the metric of Z.

This definition evidently omits contributions from gravitational
radiation to total energy. For that, try something else:



Mass at Z* continued: Penrose’s quasi-local quantities

Recall this construction:

given a space-like, topologically-spherical two surface S find
the two-surface twistors of S — these are a C* of special spinor
fields wf(x) ~ Z® € T(S) determined on S by the first and
second fundamental forms of §;

construct the bilinear Aaﬁzf‘Zzﬁ = fs RabClecwgdSab from
the Riemann tensor at S;

then A, defines the quasi-local kinematic quantities at S.

This construction reproduces the standard definitions of
asymptotic momenta in asymptotically-flat and asymptotically-anti
de Sitter space-times, and links up with the Witten argument to
prove positivity.

Work in progress...



“And | saw a new heaven and a new earth: for the first heaven and
the first earth were passed away; and there was no more sea.”

The Revelation of St. John the Divine; Chapter 21, Verse 1.



