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Introduction

e Equivalence principle = geometrization of gravity = there
is no local energy-momentum tensor of the gravitational field.
@ Gravitational energy is non-localizable .

@ Nevertheless, there are local tensors describing the strength of
the gravitational field.

@ the paradigmatic such tensor is the Bel-Robinson tensor
given in 4 dimensions by

o o 1 T
,Tozﬁku = ap)\acﬁpu + Cap,u,ocﬁp)\ - gga,@g)\ucp‘raucp v

o Here, Cypno is the Weyl tensor.

@ This formula is valid only in 4 dimensions (for general
dimension see later) and can be also written as

%Bz\p = Cap)\acﬁp,ua + *Cap)\a * Cﬁp,ua

where * denotes the Hodge dual
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@ One can prove that (in 4 dimensions):
® Toprau = T(apap)

° Tppk,u =0

°

1
%ﬁx\ufymu = Zgavﬂﬂku'fpﬁ/\u
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@ One can prove that (in 4 dimensions):
® Topru = T(aprp)
e TP ,u=0
°
%BMTWMN = %90477;)6%#7%/\”
°

’Tag,\#uavﬁw)‘z“ >0
for arbitrary future-pointing vectors u®, v°, w*, and z*
(inequality is strict if all of them are timelike). This is called
the Dominant property. (Zgooo = 0 = Caprn = 0).
°
Va']'ag)\u =0
if the vacuum Einstein’s field equations Rg, = Agg, hold.

@ This provides conserved quantities if there are (conformal)
Killing vector fields.
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o Ty =FuFr — L9, FnFr° =L (F,,F +%F,,xF,’)
o T, =T,
077, =0
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for arbitrary future-pointing vectors u* and v” (inequality is
strict if all of them are timelike). This is the Dominant energy
condition.

VH#T,w = F,,j° and therefore VAT, = 0 if there are no
charge nor currents (j* = 0).

This provides conserved quantities if there are (conformal)
Killing vector fields.
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Introduction: why Bel-Robinson?

@ The existence of the Bel-Robinson tensor has been a kind of a
mystery over the years

@ It is reminiscent of energy-momentum tensors, yet it is not
such a thing —it cannot be!

@ It has four indices, instead of the usual pair.

@ It looks related somehow to the energy-momentum properties
of the the gravitational field, but its physical dimensions (L~%)
are wrong

@ Thus, the name “super-energy” was coined by Bel.
@ The following scheme led to a series of interesting
developments

T, | “superenergy”
Gravity NO YES
Physical fields | YES 7
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@ A unified treatment, valid for the gravitational as well as other
physical fields has been elaborated and studied by Garecki.
@ The basic idea is to consider an average, over small regions, of

the relative differences between the energy-momentum
pseudo-tensor values (in normal coordinates)

@ The same can be done for the relative differences of the
energy-momentum tensors of non-gravitational fields.

@ There is a relation between this definition in the gravitational
case and the Bel-Robinson tensor.
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Classical developments: Bel tensor

@ A first step was immediately taken by Bel himself in 1958. The
Bel tensor, including matter:

1
Baﬁ/\p, = Rap)\chﬁpuU + RoapuaRﬁpAO - §gaBRpT)\URpTuU
1 1
_§gAuRapaTRﬁpUT + gga,@g)\uRpTUuRpTUV

(This is valid in general dimension n. Replacing R by C' one
gets the Bel-Robinson in general n).

® Bugxu = Bapg)yon) = Bruas

@ B,y =0inn=4.

° Bamﬂuo‘vﬁw’\z“ > 0 for arbitrary future-pointing vectors u?,
v8, w*, and 2* (inequality is strict if all of them are timelike).

® quaﬁ/\p _ Rx’i)kgjyap + Rﬂpﬂg{])xa/) o %,(])\HR%U", Jo7 where
Iz = VAR5 — V, Ryg (Compare with VAT, = F,,j°).
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The next step was taken by Chevreton in 1964, who tried to define
the super-energy tensor of the electromagnetic field.

1
Hap = 5 [vaFApngMP 4 VaFapV, Fs?
+V)\F5PVMFap + VaFlupVgF)\p

1
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1
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(This is valid in general dimension n).
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Properties of Chevreton tensor

° Haﬂku = H(aﬁ)()\p,) = H)\,u,oeﬂ- ACtua”}/r H(wg"?)\/x, - H(uzﬁ)\u) in
n=4.

@ H",; =0inn=4.

° Haﬁ,\uuavﬁw)‘z“ > 0 for arbitrary future-pointing vectors u®,
o8 w?, and 2t (inequality is strict if all of them are timelike).

o V, HP £ (. (Long expression)

e However, V,H = () in flat spacetime!

o In other words: H,gy, leads to conserved quantities in the

absence of gravitation. Recall that By, led to conservation
currents in the absence of fields...
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@ In 1999 | introduced a general definition of "super energy
tensor" (see CQG 17 (2000) 2799-2842)

e Given any tensor field A, this provides the (essentially unique)
tensor T{A} quadratic in A with the dominant property.

@ This definition recovers the energy-momentum tensor of
classical fields, as well as the Bel-Robinson, Bel, and
Chevreton tensors:

© electromagnetic field: the tensor A is F,,
@ scalar field: the tensor A is V¢,

© for Bel-Robinson: the tensor A is Cyg..
Q for Bel: the tensor A is Rag,.

© for Chevreton the tensor A is V\F),,
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An example: massless scalar field

Let ¢ be a massless scalar field.

using V¢ as seed tensor A the super-energy construction
provides the standard energy-momentum tensor

1
T/\;L{Vﬁb} = V,\qbvuqb - §g>\uvp¢vp¢

T)\;L{VQS} = T;M{qu}
T\u{V ¢} satisfies the dominant energy condition.
VHFT,,{V¢} = 0 if the field equation ¢ = 0 holds for ¢.




An example: superenergy tensor of scalar field

@ Using instead V,V, ¢ as seed tensor A one gets its
super-energy tensor :

Sapau = VaVadVu Vo + Vo VoV Vo —
—9asVAV OV (V6 — g3 Va VPOV Yy

1
+§gaﬁg>\,uvavp¢vavp¢ .




An example: superenergy tensor of scalar field

@ Using instead V,V, ¢ as seed tensor A one gets its
super-energy tensor :

Sapau = VaVadV, Vpd + VoV ,oVaV —
—9asVAV OV (V6 — g3 Va VPOV Yy

1
+§gaﬁg>\,uvavp¢vavp¢ .

° Saﬁ)\,u = S(aﬂ)(/\,u) = Sz\uaﬁ




An example: superenergy tensor of scalar field

@ Using instead V,V, ¢ as seed tensor A one gets its
super-energy tensor :

Saprp = VaVaoV, Vo + VoV, 0V\Vgh —
—9a8VAV OV NV ph — g3, Vo VPOV gV 1
1
+§gaﬁg>\,uvavp¢vavp¢ .
° Saﬁ)\,u = S(aﬂ)(/\,u) = S/\,LLaﬁ

@ One can actually use S,3),) without loss of physical
generality (then, it is uniquely defined).




An example: superenergy tensor of scalar field

@ Using instead V,V, ¢ as seed tensor A one gets its
super-energy tensor :

Saprp = VaVaoV, Vo + VoV, 0V\Vgh —
—9a8VAV OV NV ph — g3, Vo VPOV gV 1
1
+§gaﬁg>\,uvavp¢vavp¢ .
° Saﬁ)\,u = S(aﬂ)(/\,u) = S/\,LLaﬁ
@ One can actually use S,3),) without loss of physical
generality (then, it is uniquely defined).
@ In general
VaS%au = 2VV 2R,V — gru RPNV gV ,6V 50 —
~Vo o (2VPV 20 R 1ypp + 90uR 05 VIV 0)




An example: superenergy tensor of scalar field

@ Using instead V,V, ¢ as seed tensor A one gets its
super-energy tensor :

Sapau = VaVadVu Vo + Vo VoV Vo —
—9asVAV OV (V6 — g3 Va VPOV Yy

1
+§gaﬁg>\,uvavp¢vavp¢ .

° Saﬁ)\,u = S(aﬂ)(/\,u) - S/\,LLaﬁ

@ One can actually use S,3),) without loss of physical
generality (then, it is uniquely defined).

@ In general

VaS%gan = 2V 5V (30 R,,VPh — g2, R7PV 5V ¢V 5 b —
—Vo¢ (2VIV O R 1y p5 + 93l 53 VIV G)

e Again, Sy, is divergence-free in flat space-time, in the
absence of gravitational field.
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Physical considerations: units of superenergy
tensors

At the beginning, there was some confusion about the proper
physical units of the Bel-Robinson tensor

Its geometrical version has units of L™%, so it looks like
“energy density square”

One could actually think that this is a "square of an
energy-momentum tensor" —and this would actually explain
the "positivity"—. (Observe that some terms in the Bel tensor
are of type “Ricci?®" ...

Nevertheless, this is not the right answer. The correct
possibility comes from splitting the L=* into one

energy-density and a “pure L 72"

The justification comes from the following facts:
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Units

of Bel-Robinson: the small sphere limit

A first justification comes from the afore mentioned Garecki
approach.

Also: use any of the (many) definitions of quasilocal energy E
and apply to a very small sphere of radius r. Then one can
prove that at first non-trivial order in r one gets

4
E= %TgToo + O(T4)

where Ty is the timelike component of the energy-momentum
tensor (in a basis with €y orthogonal to the sphere).

e But, what happens if we are in vacuum? That is, if T, = 0.

Then, as first proven by Horowitz and Schmidt (1982)
E = (const.)r576ooo + O(rﬁ)

where Ty is the timelike component of the Bel-Robinson
tensor (the “super-energy density”).
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flux of a gravitational plane wave, for instance, travels in the
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Units

of superenergy
Comparing both expressions, one derives [T] = ML 372
Thus, the physical super-energy tensor should be

A

6%BMV

Analogously, the gravitational energy-momentum vector of a
small sphere leads to Tg; and, in vacuum, to Zggp;. The energy
flux of a gravitational plane wave, for instance, travels in the
direction of Tyg0;.

Yet another, third, independent justification comes from the
work by Teyssandier (2000), who proved that the super-energy
of a quantized scalar field is interchanged in quanta of

hws [ c?
where wy, is the frequency of the k-mode.
Finally, the fact that the super-energy tensor of physical fields

contains two extra V,, with respect to the corresponding 7},
supports this result.
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Further comments

@ As we have seen, the super-energy tensors for physical fields
can be put in physical correspondence with the super-energy
tensor of the gravitational field.

@ They are at the same “level”, carrying physical units of energy
density per unit surface

@ The analysis of the ‘strength’ of a field at points where its
energy density vanishes but such that every neighbourhood of
that point contains the field requires the super-energy concept

@ This is why the Bel-Robinson tensor arises naturally in General
Relativity, where the energy density of the gravitational field
can be always made to vanish at any point by appropriate
choice of the reference system — due to the equivalence
principle

@ Analogously, the wave-fronts, shock waves, and similar
propagating discontinuities can be properly analyzed from the
super-energy viewpoint
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Applications

@ The super-energy tensors, and in particular the Bel-Robinson
tensor, have been successfully used in many different
applications, and arises as a relevant tool in many
mathematical formalisms involving the gravitational field.

@ Outstanding cases are:

© the hyperbolic formulations of the Einstein field equations,
© the causal propagation of gravity and other fields,

© the existence of global solutions of the Cauchy problem
the study of the global stability of spacetimes.

Rainich-like conditions

Causal (future and past) tensors

Propagation of fields discontinuities (characteristics and
bi-characteristics)

Supergravity, string theory and all that...

others to be detailed presently

©0 0000
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Application: new conservation laws for £,

o Consider the trace of the Chevreton tensor H,, = H” ..
@ We have
1
H,, =V.F,,V"F,f — Zgu,,VTFpUVTFp” =
1 T
=3 (VeFu VTR + NV % F  )NT* FP)
e Thus, H,, = H,, and H?, = 0.
e More importantly, for source-free F,,: V,H"" =0
@ This is valid
@ if the electromagnetic field is “test” (spacetime is vacuum with
a possible A).

@ In the full non-linear Einstein-Maxwell theory with a possible A.
@ Thus, given any conformal Killing vector &£

—

JHE) = H™E, = V,JH =0

= new conserved quantities in Einstein-Maxwell spacetimes
having £.




@ One can prove that H,, = 0 if and only if the full Chevreton
tensor is of pure radiation type Hqpgp o< Lolgl, L, for null £,,.
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Further properties of 1,

@ One can prove that H,, = 0 if and only if the full Chevreton
tensor is of pure radiation type H,g,, o £olgl,l, for null £,,.

@ Then, the Petrov type is either N or 0 — in the former case
with £,, the principal null direction and F},, null—, and A must
vanish.

e For a general null F,,, one has
H, =V, [E(MV”E,,) — UV () — Z(MV,,)E’)] )

@ A surprising property is that, in Einstein-Maxwell spacetimes,
H,,, is essentially the conformally well-behaved Bach tensor:

2
B,, =2H,, + gAT;w

(recall: By, = (VPV" — %RPU) Chipvo)-
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r
e m(u)—the “mass’— is an arbitrary function with i <0
@ The null electromagnetic field is given by F' = \/—2m du A dx

and its wave one-form is £ = Y=2 dy
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Robinson-Trauman type-D solution with null F,,

@ A type-D solution of Einstein-Maxwell eqs. with A:

ds* = r2(dz? + dy?) — 2dudr + <2mr(u) + [;72) du?
e m(u)—the “mass’— is an arbitrary function with i <0
@ The null electromagnetic field is given by F = /=2 du A dx
and its wave one-form is £ = @ du
o Using now the three Killing vectors & = {0z, 0y, Y0y — x0y}
one can easily check that all the currents 7},,&} are identically
vanishing

e However, the divergence-free currents built with H,,, read
JH(&) = HM &) = —— & foralli=1,2,3
r

and are non-vanishing in general
@ Thus, there are non-trivial conserved quantities involving the
physically relevant magnitude r at the super-energy level.
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Causal propagation of fields

Let S be any closed achronal set and D(S) its total Cauchy
development. Let w, = —t , be any timelike 1-form foliating D(S)
with hypersurfaces ¢ =const.

Theorem (Causal propagation)
If the super-energy tensor TPH1-~Arkr L A} of any tensor field

Auy . satisties the following divergence condition

LA ATHT A
VTR Arbray o cwyn, Wy, S f TOHE2rEr gy wy, - W, Wy,

r

where f is a continuous function, then

Aps.opimls =0 = A = 0.

Pl |W

Let us remark that a key point in the proof is the dominant

property, which in particular entails that the

super-energy-momentum vector PP = TPH1-Arkryy - wy w,, i =N
future pointing.
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Causal propagation of fields

(9K), = H¥(S)

(0K); = S closed achronal set

Observe that, in particular, as the Bel-Robinson tensor is
divergence-free in vacuum, one derives the causal propagation of
gravity in vacuum (Phys. Rev. Lett. 78 (1997) 783).
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What is important about "energy"?

@ The properties of energy that make it a fundamental quantity
in Physics are:
© Positivity
© Dominance
© 'Conservation”
@ Exchange between fields keeping conservation

@ Points 1 through 3 are kept by "superenergy" tensors! What
about 47

@ Recall VB = () whenever Jaup =0

@ Recall V.S = 0 whenever Ropgay =0

@ Can one combine the "super-energy" tensor for gravity and
physical fields with the aim of restoring conservation if
J)\;L,@ 7& 07

@ Again, filling the gap:

T, | "superenergy”
Gravity NO YES

Physical fields | YES 77
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The Einstein-Klein-Gordon case

e Consider a minimally coupled scalar field ¢ with mass m (m
can be zero), so that the Einstein field equations hold:

1
Ry =VuoVyo + mm2¢2guu

e This implies the Klein-Gordon equation V*V ¢ = m?¢.
@ Then, the matter current is

4
g =2VaVpo Vo + mm% 981V NP
@ Thus, the divergence of the Bel tensor becomes in this case
VaBpau = 2Vo VPV 0OR? 1) g
~uVedVPVTOR 5 + 2VoVPOR3,6(0\V )@

—Lm & [w SR (3 — 2Vﬁ¢vmvu¢>—
2

—— 2m2¢295<Wm¢ + 9\ Vo < p¢vp¢ + 2¢2>




The Einstein-Klein-Gordon case

@ The super-energy tensor of the scalar field is given by
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The Einstein-Klein-Gordon case

@ The super-energy tensor of the scalar field is given by

Saprau =2VaV(20V,) V30 — gag (VAVPOV V00 + m° VsV ,0)
— g (Va VPOV 5V 00 + m*VadV 50)

1
+59ap90 (VoV,pdVIVPh + 2m>V ¢ VP ¢ + m*¢?)
@ Its divergence reads
VaS%san = —2V0¢VPV(A¢RUM),;5 + g Vo VPV OR o5 +

( pOVPP +— 2¢2> (2VV0 Vo — 92 VsV, V7o) .

@ One can then check that the direct sum B,gy, + Sagay is not
divergence-free in general.

@ However, this is not relevant. Conservation arises if there are

symmetries!



@ Assume gis a Killing vector. Then it is known that
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@ Assume Eis a Killing vector. Then it is known that
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The Einstein-Klein-Gordon case

@ Assume Eis a Killing vector. Then it is known that
f“VMQS = O,
e it also follows that

VPGV sV 0 = 0

Then

fﬂfAfuvaBaﬁku:V(fﬁb (QvaA¢Rgupﬂ+g>\uRUpﬁTvpvr¢) éﬁg/\fuv
PN (S g3 ==V 50 (2V ,VAOR? P 5492 R 57V V1 0) EPEAEH

Hence:
PNV o, (B ap + S%pau) = 0.




@ Using the symmetry properties of the super-energy tensors

Vo [(Bonu + %ans) €76¢4] = 0
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A mixed conserved current!

@ Using the symmetry properties of the super-energy tensors

Va (B(Y‘ﬁ,\,,, + Suﬂ)\/z,) 555/\5/1 =0

@ Observe that only the completely symmetric part of the
super-energy tensors is relevant here
@ Therefore, the super-energy currents

ja = (Baﬁ)\,u + Saﬂ/\,u) £B§>\§u

are divergence-free.

@ This leads to conservation via exchange of super-energy!

@ Actually, one can actually use any three Killing vectors (if they
are available) and the currents

Jo = (Biapan) + Sapn) €168

are divergence-free in general.




Conclusions and comments

@ There is a basically unique construction (valid for any seed
tensor, in arbitrary dimensions, independent of field equations)
providing super-energy tensors with the dominant property.




Conclusions and comments

@ There is a basically unique construction (valid for any seed
tensor, in arbitrary dimensions, independent of field equations)
providing super-energy tensors with the dominant property.

@ There are many applications: a recent one is the construction
of quality factors measuring the departure of any stationary
metric from the Kerr metric. (GRG 45 (2013) 1095-1127)




Conclusions and comments

@ There is a basically unique construction (valid for any seed
tensor, in arbitrary dimensions, independent of field equations)
providing super-energy tensors with the dominant property.

@ There are many applications: a recent one is the construction
of quality factors measuring the departure of any stationary
metric from the Kerr metric. (GRG 45 (2013) 1095-1127)

@ The correct physical dimensions for any given super-energy
density is energy density times L~2.




Conclusions and comments

@ There is a basically unique construction (valid for any seed
tensor, in arbitrary dimensions, independent of field equations)
providing super-energy tensors with the dominant property.

@ There are many applications: a recent one is the construction
of quality factors measuring the departure of any stationary
metric from the Kerr metric. (GRG 45 (2013) 1095-1127)

@ The correct physical dimensions for any given super-energy
density is energy density times L~2.

@ The most important point is that super-energy tensors give
rise to divergence-free currents if the field generating them is
isolated while these currents can be combined to produce
divergence-free currents mixing different fields in interaction.




Conclusions and comments

@ There is a basically unique construction (valid for any seed
tensor, in arbitrary dimensions, independent of field equations)
providing super-energy tensors with the dominant property.

@ There are many applications: a recent one is the construction
of quality factors measuring the departure of any stationary
metric from the Kerr metric. (GRG 45 (2013) 1095-1127)

@ The correct physical dimensions for any given super-energy
density is energy density times L~2.

@ The most important point is that super-energy tensors give
rise to divergence-free currents if the field generating them is
isolated while these currents can be combined to produce
divergence-free currents mixing different fields in interaction.

@ Hence, the interchange of super-energy quantities (in a wide
sense: they can be super-momentum, or super-stresses etc.)
does happen, and the super-energy features can be transferred
from one field to another, such as energy properties do.




Thank you for your attention

dziekuje !

DA
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